Sparsity-Regularized HMAX for Visual Recognition
نویسندگان
چکیده
منابع مشابه
Sparsity-Regularized HMAX for Visual Recognition
About ten years ago, HMAX was proposed as a simple and biologically feasible model for object recognition, based on how the visual cortex processes information. However, the model does not encompass sparse firing, which is a hallmark of neurons at all stages of the visual pathway. The current paper presents an improved model, called sparse HMAX, which integrates sparse firing. This model is abl...
متن کاملA HMAX with LLC for visual recognition
Today's high performance deep artificial neural networks (ANNs) rely heavily on parameter optimization, which is sequential in nature and even with a powerful GPU, would have taken weeks to train them up for solving challenging tasks [22]. HMAX [17] has demonstrated that a simple high performing network could be obtained without heavy optimization. In this paper, we had improved on the existing...
متن کاملGraph Regularized Within-Class Sparsity Preserving Projection for Face Recognition
As a dominant method for face recognition, the subspace learning algorithm shows desirable performance. Manifold learning can deal with the nonlinearity hidden in the data, and can project high dimensional data onto low dimensional data while preserving manifold structure. Sparse representation shows its robustness for noises and is very practical for face recognition. In order to extract the f...
متن کاملSpeed and Sparsity of Regularized Boosting
Boosting algorithms with l1-regularization are of interest because l1 regularization leads to sparser composite classifiers. Moreover, Rosset et al. have shown that for separable data, standard lpregularized loss minimization results in a margin maximizing classifier in the limit as regularization is relaxed. For the case p = 1, we extend these results by obtaining explicit convergence bounds o...
متن کاملInvestigating Shape Representation in Visual Cortex with HMAX
The Problem: The ventral pathway of the primate cortex is thought to mediate object recognition. Within the early visual areas along the pathway, neurons tend to respond well to oriented bars or edges. Neurons in the intermediate visual areas are no longer tuned to the oriented bars only, but to other forms and shapes of intermediate complexity [3, 4, 5, 6, 7]. Finally in the high visual areas,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2014
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0081813